Smartphone-Compatible Colorimetric Detection of CA19-9 Using Melanin Nanoparticles and Deep Learning.

阅读:7
作者:Karademir Turgut, Kaleli-Can Gizem, Köktürk-Güzel Başak Esin
Paper-based colorimetric biosensors represent a promising class of low-cost diagnostic tools that do not require external instrumentation. However, their broader applicability is limited by the environmental concerns associated with conventional metal-based nanomaterials and the subjectivity of visual interpretation. To address these challenges, this study introduces a proof-of-concept platform-using CA19-9 as a model biomarker-that integrates naturally derived melanin nanoparticles (MNPs) with machine learning-based image analysis to enable environmentally sustainable and analytically robust colorimetric quantification. Upon target binding, MNPs induce a concentration-dependent color transition from yellow to brown. This visual signal was quantified using a machine learning pipeline incorporating automated region segmentation and regression modeling. Sensor areas were segmented using three different algorithms, with the U-Net model achieving the highest accuracy (average IoU: 0.9025 ± 0.0392). Features extracted from segmented regions were used to train seven regression models, among which XGBoost performed best, yielding a Mean Absolute Percentage Error (MAPE) of 17%. Although reduced sensitivity was observed at higher analyte concentrations due to sensor saturation, the model showed strong predictive accuracy at lower concentrations, which are especially challenging for visual interpretation. This approach enables accurate, reproducible, and objective quantification of colorimetric signals, thereby offering a sustainable and scalable alternative for point-of-care diagnostic applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。