The Structure of Gd(3+)-Doped Li(2)O and K(2)O Containing Aluminosilicate Glasses from Molecular Dynamics Simulations.

阅读:7
作者:Zekri Mohamed, Herrmann Andreas, Erlebach Andreas, Damak Kamel, Rüssel Christian, Sierka Marek, Maâlej Ramzi
Understanding the atomic structure of glasses is critical for developing new generations of materials with important technical applications. In particular, the local environment of rare-earth ions and their distribution and clustering is of great relevance for applications of rare earth-containing glasses in photonic devices. In this work, the structure of Gd(2)O(3) doped lithium and potassium aluminosilicate glasses is investigated as a function of their network modifier oxide (NMO-Li(2)O, K(2)O) to aluminum oxide ratio using molecular dynamics simulations. The applied simulation procedure yields a set of configurations, the so-called inherent structures, of the liquid state slightly above the glass transition temperature. The generation of a large set of inherent structures allows a statistical sampling of the medium-range order of the Gd(3+) ions with less computational effort compared to other simulation methods. The resulting medium-range atomic structures of network former and modifier ions are in good agreement with experimental results and simulations of similar glasses. It was found that increasing NMO/Al ratio increases the network modifier coordination number with non-bridging oxygen sites and reduces the overall stability of the network structure. The fraction of non-bridging oxygen sites in the vicinity of Gd(3+) ions increases considerably with decreasing field strength and increasing concentration of the network modifier ions. These correlations could be confirmed even if the simulation results of alkaline earth aluminosilicate glasses are added to the analysis. In addition, the structure predictions generally indicate a low driving force for the clustering of Gd(3+). Here, network modifier ions of large ionic radii reduce the probability of Gd-O-Gd contacts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。