Local or small-area estimates to capture emerging trends across large geographic regions are critical in identifying and addressing community-level health interventions. However, they are often unavailable due to lack of analytic capabilities in compiling and integrating extensive datasets and complementing them with the knowledge about variations in state-level health policies. This study introduces a modeling approach for small-area estimation of spatial access to pediatric primary care that is data "rich" and mathematically rigorous, integrating data and health policy in a systematic way. We illustrate the sensitivity of the model to policy decision making across large geographic regions by performing a systematic comparison of the estimates at the census tract and county levels for Georgia and California. Our results show the proposed approach is able to overcome limitations of other existing models by capturing patient and provider preferences and by incorporating possible changes in health policies. The primary finding is systematic underestimation of spatial access, and inaccurate estimates of disparities across population and across geography at the county level with respect to those at the census tract level with implications on where to focus and which type of interventions to consider.
Small-Area Estimation of Spatial Access to Care and Its Implications for Policy.
阅读:5
作者:Gentili Monica, Isett Kim, Serban Nicoleta, Swann Julie
| 期刊: | Journal of Urban Health-Bulletin of the New York Academy of Medicine | 影响因子: | 4.100 |
| 时间: | 2015 | 起止号: | 2015 Oct;92(5):864-909 |
| doi: | 10.1007/s11524-015-9972-1 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
