A data-driven robust optimization model by cutting hyperplanes on vaccine access uncertainty in COVID-19 vaccine supply chain.

阅读:4
作者:Gilani Hani, Sahebi Hadi
The worldwide COVID-19 pandemic sparked such a wave of concern that made access to vaccines more necessary than before. As the vaccine inaccessibility in developing countries has made pandemic eradication more difficult, this study has presented a mathematical model of a sustainable SC for the COVID-19 vaccine that covers the economic, environmental and social aspects and provides vaccine both domestically and internationally. It has also proposed a robust data-driven model based on a polyhedral uncertainty set to address the unjust worldwide vaccine distribution as an uncertain parameter. It is acceptably robust and is also less conservative than its classical counterparts. For validation, the model has been implemented in a real case in Iran, and the results have shown that it is 21% less conservative than its classical rivals (Box and Polyhedral convex uncertainty sets) in facing the uncertain parameter. As a result, the model proposes the construction of two domestic vaccine production centers, including Pasteur Institute and Razi Institute, and five foreign distributors in Tehran, Isfahan, Ahvaz, Kermanshah, and Bandar Abbas strategically.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。