Multiple antimicrobial resistance in Staphylococcus aureus can result from mutations leading to reduced susceptibility to Pine oil-based cleaners (PS(RS)) as well as following growth with the non-steroidal anti-inflammatory salicylate. We now define the contributions of the alternative sigma factor (sigB) and staphylococcal accessory regulator (sarA) to these mechanisms. We conclude that sarA plays a more prominent role than sigB in overall intrinsic multiple antimicrobial resistance. Both genes have similar effects on intrinsic vancomycin resistance, and the salicylate-inducible mechanism is not sigB- or sarA-dependent. Furthermore, analyses determined that altered expression of sigB and sarA is not responsible for the salicylate-inducible mechanism, and sarA upregulation is associated with the PS(RS) phenotype.
Contributions of sigB and sarA to distinct multiple antimicrobial resistance mechanisms of Staphylococcus aureus.
阅读:4
作者:Riordan James T, O'Leary Jessica O, Gustafson John E
| 期刊: | International Journal of Antimicrobial Agents | 影响因子: | 4.600 |
| 时间: | 2006 | 起止号: | 2006 Jul;28(1):54-61 |
| doi: | 10.1016/j.ijantimicag.2006.01.013 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
