Human chorionic villous mesenchymal stem/stromal cells modify the effects of oxidative stress on endothelial cell functions

人绒毛膜间充质干细胞/基质细胞改变氧化应激对内皮细胞功能的影响

阅读:5
作者:M H Abumaree, M Hakami, F M Abomaray, M A Alshabibi, B Kalionis, M A Al Jumah, A S AlAskar

Abstract

Mesenchymal stem/stromal cells derived from chorionic villi of human term placentae (pMSCs) produce a unique combination of molecules, which modulate important cellular functions of their target cells while concurrently suppressing their immune responses. These properties make MSCs advantageous candidates for cell-based therapy. Our first aim was to examine the effect of high levels of oxidative stress on pMSC functions. pMSCs were exposed to hydrogen peroxide (H2O2) and their ability to proliferate and adhere to an endothelial cell monolayer was determined. Oxidatively stressed pMSCs maintained their proliferation and adhesion potentials. The second aim was to measure the ability of pMSCs to prevent oxidative stress-related damage to endothelial cells. Endothelial cells were exposed to H2O2, then co-cultured with pMSCs, and the effect on endothelial cell adhesion, proliferation and migration was determined. pMSCs were able to reverse the damaging effects of oxidative stress on the proliferation and migration but not on the adhesion of endothelial cells. These data indicate that pMSCs are not only inherently resistant to oxidative stress, but also protect endothelial cell functions from oxidative stress-associated damage. Therefore, pMSCs could be used as a therapeutic tool in inflammatory diseases by reducing the effects of oxidative stress on endothelial cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。