We recently described a new electrically compensated trap in FT ion cyclotron resonance mass spectrometry and developed a means of tuning traps of this general design. Here, we describe a continuation of that research by comparing the ion transient lifetimes and the resulting mass resolving powers and signal-to-noise (S/N) ratios that are achievable in the compensated vs. uncompensated modes of this trap. Transient lifetimes are ten times longer under the same conditions of pressure, providing improved mass resolving power and S/N ratios. The mass resolving power as a function of m/z is linear (log-log plot) and nearly equal to the theoretical maximum. Importantly, the ion cyclotron frequency as a function of ion number decreases linearly in accord with theory, unlike its behavior in the uncompensated mode. This linearity should lead to better control in mass calibration and increased mass accuracy than achievable in the uncompensated mode.
Ion Behavior in an Electrically Compensated Ion Cyclotron Resonance Trap.
阅读:6
作者:Brustkern Adam M, Rempel Don L, Gross Michael L
| 期刊: | International Journal of Mass Spectrometry | 影响因子: | 1.700 |
| 时间: | 2011 | 起止号: | 2011 Mar 1; 300(2-3):143-148 |
| doi: | 10.1016/j.ijms.2010.06.027 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
