Biomimetic Wax Interfaces Facilitating Rehealable Polymer Composites.

阅读:4
作者:Kuo Ching-Te, Chen Chien-Chin
Epicuticular wax, the first protective film for numerous ground plant species, is crucial for modulating the evolution in plants. Since the waxy film is inherently thermoresponsive, many efforts focus on engineering materials for water/oil proofing, delivery, and collection, as well as microactuators by mimicking such film nature. Nonetheless, relatively fewer works address the mechanism of how the underlying substrates direct the reconstruction of waxy films while their temperature approaches the melting point. Here, we presented a strategy in which distinct frameworks of molten wax films could be examined among various substrates. Both "waxphobic" and "waxphilic" traits were first unveiled and could be achieved by the hydrophilic (water contact angle (WCA) = 42~82°) and hydrophobic (WCA = 109°) substrates, respectively. A theoretical model, based on experimental results, fluidic dynamics, and balance of surface energy, was developed to elucidate the above findings. Moreover, we demonstrated the above biomimetic epicuticular surface (BeSurface) can be applied for rewritable paper, erasable coding, and rehealable electronics without manual repairing. Remarkably, the healing time can be reduced down to 30 s, and the cycled folding test can be continued up to 500 times. All the new findings present the potentials of the BeSurface to improve the study of rehealable materials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。