Health Recognition Algorithm for Sports Training Based on Bi-GRU Neural Networks.

阅读:6
作者:Nie Qi, Li Yun, Xiong Wen Ying, Xu Wei
The healthcare benefits associated with regular physical activity recognition and monitoring have been considered in several research studies. Regular recognition and monitoring of health status can potentially assist in managing and reducing the risk of many diseases such as cardiovascular disease, diabetes, and obesity. Using healthcare equipment in hospitals, people can conduct regular physical examinations to check their health status. However, most of the time, it is difficult to reach a specific medical environment and use special medical equipment. In this paper, a deep learning framework based on the bidirectional gated recurrent unit for health status recognition is implemented to improve the accuracy by making full use of the information provided by smartphone acceleration sensors. A model based on a bidirectional gated recurrent unit is constructed to describe the relationship between input acceleration signals and output information through a gating approach. Therefore, it can automatically detect the health status of the sportsman as healthy, subhealthy, and unhealthy. Finally, the practical data collected from an athlete have been used to evaluate the recognition performance of the system. Results show that the proposed methodology can predicate the sports health status accurately.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。