Adipose tissue-derived stem cells inhibit neointimal formation in a paracrine fashion in rat femoral artery

脂肪组织来源的干细胞以旁分泌方式抑制大鼠股动脉新内膜形成

阅读:7
作者:Masao Takahashi, Etsu Suzuki, Shigeyoshi Oba, Hiroaki Nishimatsu, Kenjiro Kimura, Tetsuo Nagano, Ryozo Nagai, Yasunobu Hirata

Abstract

Subcutaneous adipose tissue contains a lot of stem cells [adipose-derived stem cells (ASCs)] that can differentiate into a variety of cell lineages. In this study, we isolated ASCs from Wistar rats and examined whether ASCs would efficiently differentiate into vascular endothelial cells (ECs) in vitro. We also administered ASCs in a wire injury model of rat femoral artery and examined their effects. ASCs expressed CD29 and CD90, but not CD34, suggesting that ASCs resemble bone marrow-derived mesenchymal stem cells. When induced to differentiate into ECs with endothelial growth medium (EGM), ASCs expressed Flt-1, but not Flk-1 or mature EC markers such as CD31 and vascular endothelial cadherin. ASCs produced angiopoietin-1 when they were cultured in EGM. ASCs stimulated the migration of EC, as assessed by chemotaxis assay. When ASCs that were cultured in EGM were injected in the femoral artery, the ASCs potently and significantly inhibited neointimal formation without being integrated in the endothelial layer. EGM-treated ASCs significantly suppressed neointimal formation even when they were administered from the adventitial side. ASC administration significantly promoted endothelial repair. These results suggested that although ASCs appear to have little capacity to differentiate into mature ECs, ASCs have the potential to secrete paracrine factors that stimulate endothelial repair. Our results also suggested that ASCs inhibited neointimal formation via their paracrine effect of stimulation of EC migration in situ rather than the direct integration into the endothelial layer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。