5-Methoxytryptophan alleviates atrial structural remodeling in ibrutinib-associated atrial fibrillation

5-甲氧基色氨酸减轻依鲁替尼相关心房颤动的心房结构重塑

阅读:7
作者:Wei Shuai, Bo Peng, Jun Zhu, Bin Kong, Hui Fu, He Huang

Background

Ibrutinib is an effective and well-tolerated treatment for B-cell lymphomas but is associated with an increased risk of atrial fibrillation (AF) by altering the structure of the atrium. 5-Methoxytryptophan (5-MTP) inhibits inflammatory and fibrotic processes. This study aimed to determine the effects and mechanisms of 5-MTP on the underlying mechanisms of AF caused by ibrutinib.

Conclusions

These findings suggest that 5-MTP administration decreases the vulnerability of ibrutinib-related AF mainly caused by ameliorated maladaptive left atrial remodeling and dysregulation of calcium handling proteins. Mechanistically, 5-MTP treatment markedly enhanced the activation of cardiac PI3K-Akt signaling.

Methods

The effect of 5-MTP on ibrutinib-related AF was investigated in male Sprague Dawley rats using echocardiographic, electrophysiological, immunofluorescent, Masson staining, and molecular analyses. Rusults: The ibrutinib+5-MTP group showed (1) a lower incidence and shorter duration of AF and accelerated atrial conduction; (2) a decreased left atrial mass and left atrial diameter; (3) decreased myocardial fibrosis in the left atrium; (4) lower atrial inflammation; (5) increased sarcoplasmic reticulum Ca2+-ATPase 2a protein expression, decreased phosphorylation of phospholamban at Thr17, and decreased sodium/calcium exchanger 1 protein expression and phosphorylation of ryanodine receptor 2 at S2814; and (6) decreased phosphorylation of CaMKII expression. 5-MTP treatment markedly activated the PI3K-Akt signaling. Inhibiting PI3K-Akt signaling significantly reversed the protective effect of 5-MTP on ibrutinib-related AF. Conclusions: These findings suggest that 5-MTP administration decreases the vulnerability of ibrutinib-related AF mainly caused by ameliorated maladaptive left atrial remodeling and dysregulation of calcium handling proteins. Mechanistically, 5-MTP treatment markedly enhanced the activation of cardiac PI3K-Akt signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。