Metabotropic glutamate 7 receptor subtype modulates motor symptoms in rodent models of Parkinson's disease

代谢型谷氨酸 7 受体亚型调节帕金森病啮齿动物模型中的运动症状

阅读:7
作者:B Greco, S Lopez, H van der Putten, P J Flor, M Amalric

Abstract

Metabotropic glutamate (mGlu) receptors modulate synaptic transmission in the central nervous system and represent promising therapeutic targets for symptomatic treatment of Parkinson's disease (PD). Among the eight mGlu receptor subtypes, mGlu7 receptor is prominently expressed in the basal ganglia, but its role in restoring motor function in animal models of PD is not known. The effects of N,N'-dibenzhydrylethane-1,2-diamine dihydrochloride (AMN082), the first selective allosteric activator of mGlu7 receptors, were thus tested in different rodent models of PD. Here, we show that oral (5 mg/kg) or intrastriatal administration (0.1 and 0.5 nmol) of AMN082 reverses haloperidol-induced catalepsy in rats. AMN082 (2.5 and 5 mg/kg) reduces apomorphine-induced rotations in unilateral 6-hydroxydopamine (6-OHDA)-lesioned rats. In a more complex task commonly used to evaluate major akinetic symptoms of PD patients, 5 mg/kg AMN082 reverses the increased reaction time to respond to a cue of bilateral 6-OHDA-lesioned rats. In addition, AMN082 reduces the duration of haloperidol-induced catalepsy in a mGlu7 receptor-dependent manner in wild-type but not mGlu7 receptor knockout mice. Higher doses of AMN082 (10 and 20 mg/kg p.o.) have no effect on the same models of PD. Overall these findings suggest that mGlu7 receptor activation can reverse motor dysfunction associated with reduced dopamine activity. Selective ligands of mGlu7 receptor subtypes may thus be considered as promising compounds for the development of antiparkinsonian therapeutic strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。