virtualArray: a R/bioconductor package to merge raw data from different microarray platforms

virtualArray:一个用于合并来自不同微阵列平台的原始数据的 R/bioconductor 包

阅读:2
作者:Andreas Heider ,Rüdiger Alt

Abstract

Background: Microarrays have become a routine tool to address diverse biological questions. Therefore, different types and generations of microarrays have been produced by several manufacturers over time. Likewise, the diversity of raw data deposited in public databases such as NCBI GEO or EBI ArrayExpress has grown enormously.This has resulted in databases currently containing several hundred thousand microarray samples clustered by different species, manufacturers and chip generations. While one of the original goals of these databases was to make the data available to other researchers for independent analysis and, where appropriate, integration with their own data, current software implementations could not provide that feature.Only those data sets generated on the same chip platform can be readily combined and even here there are batch effects to be taken care of. A straightforward approach to deal with multiple chip types and batch effects has been missing.The software presented here was designed to solve both of these problems in a convenient and user friendly way. Results: The virtualArray software package can combine raw data sets using almost any chip types based on current annotations from NCBI GEO or Bioconductor. After establishing congruent annotations for the raw data, virtualArray can then directly employ one of seven implemented methods to adjust for batch effects in the data resulting from differences between the chip types used. Both steps can be tuned to the preferences of the user. When the run is finished, the whole dataset is presented as a conventional Bioconductor "ExpressionSet" object, which can be used as input to other Bioconductor packages. Conclusions: Using this software package, researchers can easily integrate their own microarray data with data from public repositories or other sources that are based on different microarray chip types. Using the default approach a robust and up-to-date batch effect correction technique is applied to the data.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。