Importance of human peritoneal mesothelial cells in the progression, fibrosis, and control of gastric cancer: inhibition of growth and fibrosis by tranilast

人腹膜间皮细胞在胃癌进展、纤维化和控制中的重要性:曲尼司特对生长和纤维化的抑制

阅读:4
作者:Hiroto Saito, Sachio Fushida, Shinichi Harada, Tomoharu Miyashita, Katsunobu Oyama, Takahisa Yamaguchi, Tomoya Tsukada, Jun Kinoshita, Hidehiro Tajima, Itasu Ninomiya, Tetsuo Ohta

Background

Scirrhous gastric cancer is an intractable disease with a high incidence of peritoneal dissemination and obstructive symptoms (e.g., ileus, jaundice, and hydronephrosis) arising from accompanying marked fibrosis. Microenvironmental interactions between cancer cells and cancer-associated fibroblasts are the suggested cause of the disease. We elucidated the mechanisms of tumor growth and fibrosis using human peritoneal mesothelial cells (HPMCs) and investigated the effects of tranilast treatment on cells and a xenograft mouse model of fibrosis.

Conclusions

Tranilast acts on the TGF-β/Smad pathway to inhibit interactions between cancer cells and cancer-associated fibroblasts, thereby inhibiting tumor growth and fibrosis. This study supports the hypothesis that tranilast represents a novel strategy to prevent fibrous tumor establishment represented by peritoneal dissemination.

Methods

HPMCs were isolated from surgically excised omentum and their interaction with MKN-45 gastric cancer cells was investigated using co-culture. Furthermore, a fibrosis tumor model was developed based on subcutaneous transplantation of co-cultured cells into the dorsal side of nude mice to form large fibrotic tumors. Mice were subsequently treated with or without tranilast.

Results

The morphology of HPMCs treated with transforming growth factor (TGF)-β1 changed from cobblestone to spindle-type. Moreover, E-cadherin was weakly expressed whereas high levels of α-smooth muscle actin expression were observed. TGF-β-mediated epithelial-mesenchymal transition-like changes in HPMCs were inhibited in a dose-dependent manner following tranilast treatment through inhibition of Smad2 phosphorylation. In the mouse model, tumor size decreased significantly and fibrosis was inhibited in the tranilast treatment group compared with that in the control group. Conclusions: Tranilast acts on the TGF-β/Smad pathway to inhibit interactions between cancer cells and cancer-associated fibroblasts, thereby inhibiting tumor growth and fibrosis. This study supports the hypothesis that tranilast represents a novel strategy to prevent fibrous tumor establishment represented by peritoneal dissemination.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。