Interferon regulatory factor IRF-7 induces the antiviral alpha interferon response and protects against lethal West Nile virus infection

干扰素调节因子IRF-7诱导抗病毒α干扰素反应,并能抵御致命的西尼罗河病毒感染。

阅读:2
作者:Stephane Daffis ,Melanie A Samuel, Mehul S Suthar, Brian C Keller, Michael Gale Jr, Michael S Diamond

Abstract

Type I interferon (IFN-alpha/beta) comprises a family of immunomodulatory cytokines that are critical for controlling viral infections. In cell culture, many RNA viruses trigger IFN responses through the binding of RNA recognition molecules (RIG-I, MDA5, and TLR-3) and induction of interferon regulatory factor IRF-3-dependent gene transcription. Recent studies with West Nile virus (WNV) have shown that type I IFN is essential for restricting infection and that a deficiency of IRF-3 results in enhanced lethality. However, IRF-3 was not required for optimal systemic IFN production in vivo or in vitro in macrophages. To begin to define the transcriptional factors that regulate type I IFN after WNV infection, we evaluated IFN induction and virus control in IRF-7(-/-) mice. Compared to congenic wild-type mice, IRF-7(-/-) mice showed increased lethality after WNV infection and developed early and elevated WNV burdens in both peripheral and central nervous system tissues. As a correlate, a deficiency of IRF-7 blunted the systemic type I IFN response in mice. Consistent with this, IFN-alpha gene expression and protein production were reduced and viral titers were increased in IRF-7(-/-) primary macrophages, fibroblasts, dendritic cells, and cortical neurons. In contrast, in these cells the IFN-beta response remained largely intact. Our data suggest that the early protective IFN-alpha response against WNV occurs through an IRF-7-dependent transcriptional signal.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。