Identification of biomarkers associated with metabolic cardiovascular disease using mRNA-SNP-miRNA regulatory network analysis

利用mRNA-SNP-miRNA调控网络分析鉴定与代谢性心血管疾病相关的生物标志物

阅读:2
作者:Zhiyuan Fan ,Wenjuan Peng ,Zhiwen Wang ,Ling Zhang ,Kuo Liu

Abstract

Background: CVD is the leading cause of death in T2DM patients. However, few biomarkers have been identified to detect and diagnose CVD in the early stage of T2DM. The aim of our study was to identify the important mRNAs, micro (mi)RNAs and SNPs (single nucleotide polymorphisms) that are associated with metabolic cardiovascular disease. Materials and methods: Expression profiles and GWAS data were obtained from Gene Expression Omnibus (GEO) database. MiRNA-sequencing was conducted by Illumina HiSeq 2000 platform in T2DM patients and T2DM with CVD patients. EQTL analysis and gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted. MRNA-miRNA co-expression network and mRNA-SNP-miRNA interaction network were established and visualized by Cytoscape 3.7.2. Results: In our study, we identified 56 genes and 16 miRNAs that were significantly differentially expressed. KEGG analyses results indicated that B cell receptor signaling pathway and hematopoietic cell lineage were included in the biological functions of differentially expressed genes. MRNA-miRNA co-expression network and mRNA-SNP-miRNA interaction network illustrated that let-7i-5p, RASGRP3, KRT1 and CEP41 may be potential biomarkers for the early detection and diagnosis of CVD in T2DM patients. Conclusion: Our results suggested that downregulated let-7i-5p, and upregulated RASGRP3, KRT1 and CEP41 may play crucial roles in molecular mechanisms underlying the initiation and development of CVD in T2DM patients. Keywords: CVD; Interaction network; SNP; T2DM; mRNA; miRNA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。