The miR165/166-PHABULOSA module promotes thermotolerance by transcriptionally and posttranslationally regulating HSFA1

miR165/166-PHABULOSA模块通过转录和翻译后调控HSFA1来促进耐热性。

阅读:2
作者:Jie Li ,Yiming Cao ,Jiaxin Zhang ,Cuijing Zhu ,Guiliang Tang ,Jun Yan

Abstract

Heat stress (HS) adversely affects plant growth and productivity. The Class A1 HS transcription factors (HSFA1s) act as master regulators in the plant response to HS. However, how HSFA1-mediated transcriptional reprogramming is modulated during HS remains to be elucidated. Here, we report that a module formed by the microRNAs miR165 and miR166 and their target transcript, PHABULOSA (PHB), regulates HSFA1 at the transcriptional and translational levels to control plant HS responses. HS-triggered induction of MIR165/166 in Arabidopsis thaliana led to decreased expression of target genes including PHB. MIR165/166 overexpression lines and mutations in miR165/166 target genes enhanced HS tolerance, whereas miR165/166 knockdown lines and plants expressing a miR165/166-resistant form of PHB were sensitive to HS. PHB directly repressed the transcription of HSFA1s and globally modulated the expression of HS-responsive genes. PHB and HSFA1s share a common target gene, HSFA2, which is essential for activation of plant responses to HS. PHB physically interacted with HSFA1s and exerted an antagonistic effect on HSFA1 transcriptional activity. PHB and HSFA1s co-regulated transcriptome reprogramming upon HS. Together, these findings indicate that heat-triggered regulation of the miR165/166-PHB module controls HSFA1-mediated transcriptional reprogramming and plays a critical role during HS in Arabidopsis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。