A 3D Human Lymphatic Vessel-on-Chip Reveals the Roles of Interstitial Flow and VEGF-A/C for Lymphatic Sprouting and Discontinuous Junction Formation

3D 人体淋巴管芯片揭示间质流和 VEGF-A/C 对淋巴管发芽和不连续连接形成的作用

阅读:6
作者:Isabelle S Ilan, Aria R Yslas, Yansong Peng, Renhao Lu, Esak Lee

Conclusions

In this study, we provide an engineered lymphatic vessel platform that can generate four different flow regimes and reveal the roles of interstitial flow and VEGF-A/C for lymphatic sprouting and discontinuous junction formation.

Methods

We developed a 3D human lymphatic vessel-on-chip that can generate four different flow conditions (no flow, luminal flow, interstitial flow, both luminal and interstitial flow) to allow an engineered, rudimentary LV to experience those flows and respond to them in VEGF-A/C.

Results

We examined LEC junction discontinuities, lymphatic sprouting, LEC junction thicknesses, and cell contractility-dependent vessel diameters in the four different flow conditions in VEGF-A/C. We discovered that interstitial flow in VEGF-C generates discontinuous LEC junctions that may be similar to the button-like junctions with no lymphatic sprouting. However, interstitial flow or both luminal and interstitial flow stimulated lymphatic sprouting in VEGF-A, maintaining zipper-like LEC junctions. LEC junction thickness and cell contractility-dependent vessel diameters were not changed by those conditions. Conclusions: In this study, we provide an engineered lymphatic vessel platform that can generate four different flow regimes and reveal the roles of interstitial flow and VEGF-A/C for lymphatic sprouting and discontinuous junction formation.

Supplementary Information

The online version contains supplementary material available at 10.1007/s12195-023-00780-0.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。