Matrix Rigidity-Dependent Regulation of Ca2+ at Plasma Membrane Microdomains by FAK Visualized by Fluorescence Resonance Energy Transfer

通过荧光共振能量转移可视化 FAK 对质膜微区 Ca2+ 的基质刚度依赖性调节

阅读:5
作者:Tae-Jin Kim, Lei Lei, Jihye Seong, Jung-Soo Suh, Yoon-Kwan Jang, Sang Hoon Jung, Jie Sun, Deok-Ho Kim, Yingxiao Wang

Abstract

The dynamic regulation of signal transduction at plasma membrane microdomains remains poorly understood due to limitations in current experimental approaches. Genetically encoded biosensors based on fluorescent resonance energy transfer (FRET) can provide high spatiotemporal resolution for imaging cell signaling networks. Here, distinctive regulation of focal adhesion kinase (FAK) and Ca2+ signals are visualized at different membrane microdomains by FRET using membrane-targeting biosensors. It is shown that rigidity-dependent FAK and Ca2+ signals in human mesenchymal stem cells (hMSCs) are selectively activated at detergent-resistant membrane (DRM or rafts) microdomains during the cell-matrix adhesion process, with minimal activities at non-DRM domains. The rigidity-dependent Ca2+ signal at the DRM microdomains is downregulated by either FAK inhibition or lipid raft disruption, suggesting that FAK and lipid raft integrity mediate the in situ Ca2+ activation. It is further revealed that transient receptor potential subfamily M7 (TRPM7) participates in the mobilization of Ca2+ signals within DRM regions. Thus, the findings provide insights into the underlying mechanisms that regulate Ca2+ and FAK signals in hMSCs under different mechanical microenvironments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。