Biofunctionalized Materials Featuring Feedforward and Feedback Circuits Exemplified by the Detection of Botulinum Toxin A

具有前馈和反馈电路的生物功能化材料,以肉毒杆菌毒素 A 的检测为例

阅读:5
作者:Hanna J Wagner, Svenja Kemmer, Raphael Engesser, Jens Timmer, Wilfried Weber

Abstract

Feedforward and feedback loops are key regulatory elements in cellular signaling and information processing. Synthetic biology exploits these elements for the design of molecular circuits that enable the reprogramming and control of specific cellular functions. These circuits serve as a basis for the engineering of complex cellular networks, opening the door for numerous medical and biotechnological applications. Here, a similar principle is applied. Feedforward and positive feedback circuits are incorporated into biohybrid polymer materials in order to develop signal-sensing and signal-processing devices. This concept is exemplified by the detection of the proteolytic activity of the botulinum neurotoxin A. To this aim, site-specific proteases are incorporated into receiver, transmitter, and output materials, and their release, diffusion, and/or activation are wired according to a feedforward or a positive feedback circuit. The development of a quantitative mathematical model enables analysis and comparison of the performance of both systems. The flexible design could be easily adapted to detect other toxins or molecules of interest. Furthermore, cellular signaling or gene regulatory pathways could provide additional blueprints for the development of novel biohybrid circuits. Such information-processing, material-embedded biological circuits hold great promise for a variety of analytical, medical, or biotechnological applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。