Inhibition of iNKT Cells by the HLA-G-ILT2 Checkpoint and Poor Stimulation by HLA-G-Expressing Tolerogenic DC

HLA-G-ILT2检查点对iNKT细胞的抑制以及表达HLA-G的耐受性树突状细胞对iNKT细胞的刺激作用较弱

阅读:2
作者:Ching-Lien Wu ,Julien Caumartin ,Giada Amodio ,François Anna ,Maria Loustau ,Silvia Gregori ,Pierre Langlade-Demoyen ,Joel LeMaoult

Abstract

Invariant Natural Killer T (iNKT) cells are a small and distinct population of T cells crucial in immunomodulation. After activation by alpha-GalactosylCeramide (αGC), an exogenic glycolipid antigen, iNKT cells can rapidly release cytokines to enhance specific anti-tumor activity. Several human clinical trials on iNKT cell-based anti-cancer are ongoing, however results are not as striking as in murine models. Given that iNKT-based immunotherapies are dependent mainly on antigen-presenting cells (APC), a human tolerogenic molecule with no murine homolog, such as Human Leucocyte Antigen G (HLA-G), could contribute to this discrepancy. HLA-G is a well-known immune checkpoint molecule involved in fetal-maternal tolerance and in tumor immune escape. HLA-G exerts its immunomodulatory functions through the interaction with immune inhibitory receptors such as ILT2, differentially expressed on immune cell subsets. We hypothesized that HLA-G might inhibit iNKT function directly or by inducing tolerogenic APC leading to iNKT cell anergy, which could impact the results of current clinical trials. Using an ILT2-transduced murine iNKT cell line and human iNKT cells, we demonstrate that iNKT cells are sensitive to HLA-G, which inhibits their cytokine secretion. Furthermore, human HLA-G+ dendritic cells, called DC-10, failed at inducing iNKT cell activation compared to their autologous HLA-G‒ DCs counterparts. Our data show for the first time that the HLA-G/ILT2 ICP is involved in iNKT cell function modulation. Keywords: Human Leucocyte Antigen G; ILT2/CD85j/LILRB1; Natural Killer T cells; immune regulation; tolerogenic dendritic cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。