Antimicrobial susceptibility and minimum inhibitory concentration distribution of common clinically relevant non-tuberculous mycobacterial isolates from the respiratory tract

呼吸道常见临床相关非结核分枝杆菌分离株的抗菌敏感性及最低抑菌浓度分布

阅读:4
作者:Guiqing He, Lianpeng Wu, Qingyong Zheng, Xiangao Jiang

Conclusion

The identification of NTM species and the detection of their MICs have certain guiding values for the treatment of NTM lung disease.Key MessageThe three most common respiratory non-tuberculous mycobacterial (NTM) isolates with clinical significance in the Wenzhou area were tested for drug susceptibility. The broth microdilution method was used to determine the minimum inhibitory concentration distribution of antibacterial drugs and the susceptibility of NTM isolates to provide a reference basis for the clinical selection of an effective starting regimen.

Discussion

In Wenzhou, clarithromycin, amikacin and rifabutin have good antibacterial activity against MAC, while linezolid and moxifloxacin have high resistance. Amikacin and tigecycline have strong antibacterial activity against MAB, while most other antibacterial drugs are resistant to varying degrees. Most antibacterial drugs are susceptible to M. kansasii and have good antibacterial activity.Conclusion: The identification of NTM species and the detection of their MICs have certain guiding values for the treatment of NTM lung disease.Key MessageThe three most common respiratory non-tuberculous mycobacterial (NTM) isolates with clinical significance in the Wenzhou area were tested for drug susceptibility. The broth microdilution method was used to determine the minimum inhibitory concentration distribution of antibacterial drugs and the susceptibility of NTM isolates to provide a reference basis for the clinical selection of an effective starting regimen.

Methods

The common clinical isolates of NTM in the respiratory tract, which met the standards of the American Thoracic Society for NTM lung disease, were collected. The MICs of 81 isolates were determined using the microbroth dilution method (Thermo Fisher Scientific, USA), as recommended by the Clinical and Laboratory Standards Institute, USA.

Objective

To determine the minimum inhibitory concentration (MIC) distribution of antibacterial drugs and the susceptibility of non-tuberculous mycobacterial (NTM) isolates to provide a reference basis for the clinical selection of an effective starting regimen.

Results

Included were 43 Mycobacterium avium complex (MAC) strains, 24 M. abscessus complex (MAB) strains, and 14 M. kansasii strains. The sensitivity rates of MAC to clarithromycin and amikacin were 81.4% and 79.1%, respectively, while the sensitivity rates to linezolid and moxifloxacin were only 20.9% and 9.3%; the MIC of rifabutin was the lowest (MIC50% was just 2 μg/mL). After incubation for 3-5 days, the sensitivity rate of MAB to clarithromycin was 87.5%; this decreased to 50% after 14 days' incubation. Most of them were susceptible to amikacin (91.6%), and most were resistant to moxifloxacin (95.8%), ciprofloxacin (95.8%), imipenem (95.8%), amoxicillin/clavulanate (95.8%), tobramycin (79.1%), doxycycline (95.8%) and trimethoprim/sulfamethoxazole (95.8%). intermediate (83.3%) and resistant (16.7%) to cefoxitin. The susceptibility to linezolid was only 33.3%. The sensitivity and resistance breakpoints of tigecycline were set to ≤0.5 and ≥8 μg/mL, respectively, and the sensitivity and resistance rates were 50% and 0%, respectively. M. kansasii was susceptible to clarithromycin, amikacin, linezolid, moxifloxacin, rifampicin and rifabutin (100%).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。