Dominant role of antigen dose in CD4+Foxp3+ regulatory T cell induction and expansion

抗原剂量在CD4+Foxp3+调节性T细胞的诱导和扩增中起主导作用

阅读:2
作者:Michael S Turner ,Lawrence P Kane, Penelope A Morel

Abstract

The definitions of tolerogenic vs immunogenic dendritic cells (DC) remain controversial. Immature DC have been shown to induce T regulatory cells (Treg) specific for foreign and allogeneic Ags. However, we have previously reported that mature DC (mDC) prevented the onset of autoimmune diabetes, whereas immature DC (iDC) were therapeutically ineffective. In this study, islet-specific CD4(+) T cells from BDC2.5 TCR-transgenic mice were stimulated in the absence of exogenous cytokine with iDC or mDC pulsed with high- or low-affinity antigenic peptides and examined for Treg induction. Both iDC and mDC presenting low peptide doses induced weak TCR signaling via the Akt/mammalian target of rapamycin (mTOR) pathway, resulting in significant expansion of Foxp3(+) Treg. Furthermore, unpulsed mDC, but not iDC, also induced Treg. High peptide doses induced strong Akt/mTOR signaling and favored the expansion of Foxp3(neg) Th cells. The inverse correlation of Foxp3 and Akt/mTOR signaling was also observed in DO11.10 and OT-II TCR-transgenic T cells and was recapitulated with anti-CD3/CD28 stimulation in the absence of DC. IL-6 production in these cultures correlated positively with Ag dose and inversely with Treg expansion. Studies with T cells or DC from IL-6(-/-) mice revealed that IL-6 production by T cells was more important in the inhibition of Treg induction at low Ag doses. These studies indicate that the strength of Akt/mTOR signaling, a critical T cell-intrinsic determinant for Treg vs Th induction, can be controlled by adjusting the dose of antigenic peptide. Furthermore, this operates in a dominant fashion over DC phenotype and cytokine production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。