Jagged-1 is required for the expansion of CD4+ CD25+ FoxP3+ regulatory T cells and tolerogenic dendritic cells by murine mesenchymal stromal cells

鼠间充质基质细胞扩增CD4+CD25+FoxP3+调节性T细胞和耐受性树突状细胞需要Jagged-1。

阅读:2
作者:Emer F Cahill ,Laura M Tobin ,Fiona Carty ,Bernard P Mahon ,Karen English

Abstract

Introduction: Mesenchymal stromal cells (MSC) have well defined immunomodulatory properties including the suppression of lymphocyte proliferation and inhibition of dendritic cell (DC) maturation involving both cell contact and soluble factors. These properties have made MSC attractive candidates for cellular therapy. However, the mechanism underlying these characteristics remains unclear. This study sought to investigate the mechanisms by which MSC induce a regulatory environment. Method: Allogeneic bone marrow mesenchymal stromal cells were cultured with T cells or dendritic cells in the presence or absence of gamma secretase inhibitor to block Notch receptor signalling. T cells and dendritic cells were examined by flow cytometry for changes in phenotype marker expression. Stable knock down MSC were generated to examine the influence of Jagged 1 signalling by MSC. Both wildtype and knockdown MSC were subsequently used in vivo in an animal model of allergic airway inflammation. Results: The Notch ligand Jagged-1 was demonstrated to be involved in MSC expansion of regulatory T cells (Treg). Additionally, MSC-induced a functional semi-mature DC phenotype, which further required Notch signalling for the expansion of Treg. MSC, but not Jagged-1 knock down MSC, reduced pathology in a mouse model of allergic airway inflammation. Protection mediated by MSC was associated with enhanced Treg in the lung and significantly increased production of interleukin (IL)-10 in splenocytes re-stimulated with allergen. Significantly less Treg and IL-10 was observed in mice treated with Jagged-1 knock down MSC. Conclusions: The current study suggests that MSC-mediated immune modulation involves the education and expansion of regulatory immune cells in a Jagged-1 dependent manner and provides the first report of the importance of Jagged-1 signalling in MSC protection against inflammation in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。