Enriched environment attenuates ferroptosis after cerebral ischemia/reperfusion injury by regulating iron metabolism

丰富的环境通过调节铁代谢减轻脑缺血/再灌注损伤后的铁死亡

阅读:5
作者:Qihang Luo, Jun Zheng, Bin Fan, Jingying Liu, Weijing Liao, Xin Zhang

Abstract

Preventing neuronal death after ischemic stroke (IS) is crucial for neuroprotective treatment, yet current management options are limited. Enriched environment (EE) is an effective intervention strategy that promotes the recovery of neurological function after cerebral ischemia/reperfusion (I/R) injury. Ferroptosis has been identified as one of the mechanisms of neuronal death during IS, and inhibiting ferroptosis can reduce cerebral I/R injury. Our previous research has demonstrated that EE reduced ferroptosis by inhibiting lipid peroxidation, but the underlying mechanism still needs to be investigated. This study aims to explore the potential molecular mechanisms by which EE modulates iron metabolism to reduce ferroptosis. The experimental animals were randomly divided into four groups based on the housing environment and the procedure the animals received: the sham-operated + standard environment (SSE) group, the sham-operated + enriched environment (SEE) group, the ischemia/reperfusion + standard environment (ISE) group, and the ischemia/reperfusion + enriched environment (IEE) group. The results showed that EE reduced IL-6 expression during cerebral I/R injury, hence reducing JAK2-STAT3 pathway activation and hepcidin expression. Reduced hepcidin expression led to decreased DMT1 expression and increased FPN1 expression in neurons, resulting in lower neuronal iron levels and alleviated ferroptosis. In addition, EE also reduced the expression of TfR1 in neurons. Our research suggested that EE played a neuroprotective role by modulating iron metabolism and reducing neuronal ferroptosis after cerebral I/R injury, which might be achieved by inhibiting inflammatory response and down-regulating hepcidin expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。