Regulating MCP-1 diffusion in affinity hydrogels for enhancing immuno-isolation

调节亲和水凝胶中的 MCP-1 扩散以增强免疫隔离

阅读:6
作者:Chien-Chi Lin, Patrick D Boyer, Alex A Aimetti, Kristi S Anseth

Abstract

Delivering cells using semi-permeable hydrogels is becoming an increasingly important direction in cell based therapies and regenerative medicine applications. Synthetic hydrogels have been functionalized with bioactive motifs to render otherwise inert polymer networks responsive. However, little effort has been focused on creating immuno-isolating materials capable of retarding the transport of small antigenic molecules secreted from the cells delivered with the synthetic carriers. Toward the goal of developing a complete immuno-isolation polymeric barrier, affinity peptide-functionalized PEG hydrogels were developed with the ability to sequester monocyte chemotactic protein 1 (MCP-1), a chemokine known to induce the chemotaxis of monocytes, dendritic cells, and memory T-cells. Affinity peptides capable of sequestering MCP-1 were identified from CCR2 (a G protein-coupled receptor for MCP-1) and incorporated within PEG hydrogels via a thiol-acrylate photopolymerization. The release of encapsulated recombinant MCP-1 from PEG hydrogels is readily tuned by: (1) incorporating affinity peptides within the network; and/or (2) altering the spacer distance between the affinity peptide and the crosslinking site. Furthermore, when pancreatic beta-cells were encapsulated within these novel peptide-functionalized hydrogels, the release of cell-secreted MCP-1 was significantly reduced, demonstrating the potential of this new gel formulation to reduce the host innate immune response to transplanted cells by decreasing the recruitment and activation of host monocytes and other immune cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。