Determinants of cytoplasmic microtubule depolymerization during ciliogenesis in Chlamydomonas

衣藻纤毛发生过程中细胞质微管解聚的决定因素

阅读:7
作者:Larissa L Dougherty, Prachee Avasthi

Abstract

At the core of cilia are microtubules which establish length and assist ciliary assembly and disassembly; however, microtubules outside of the cilium can regulate ciliogenesis. The microtubule cytoskeleton polymerizes and depolymerizes rapidly. These processes have been studied across various organisms with chemical and genetic perturbations. However, these have generated conflicting data in terms of the role of cytoplasmic microtubules (CytoMTs) and free tubulin dynamics during ciliogenesis. Here, we look at the relationship between ciliogenesis and CytoMT dynamics in Chlamydomonas reinhardtii using chemical and mechanical perturbations. We find that not only can stabilized CytoMTs allow for normal ciliary assembly, but high calcium concentrations and low pH-induced deciliation cause CytoMTs to depolymerize separately from ciliary shedding. In addition, ciliary shedding through mechanical shearing allows cilia to regenerate earlier despite intact CytoMTs. Our data suggest that CytoMTs are not a sink for a limiting pool of cytoplasmic tubulin in Chlamydomonas, depolymerization after deciliation is a consequence rather than a requirement for ciliogenesis, and intact tubulin in the cytoplasm and proximal cilium support more efficient ciliary assembly.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。