Interleukin-33 Promotes REG3γ Expression in Intestinal Epithelial Cells and Regulates Gut Microbiota

白细胞介素-33促进肠上皮细胞中REG3γ的表达并调节肠道菌群

阅读:6
作者:Yi Xiao, Xiangsheng Huang, Ye Zhao, Feidi Chen, Mingming Sun, Wenjing Yang, Liang Chen, Suxia Yao, Alex Peniche, Sara M Dann, Jiaren Sun, George Golovko, Yuriy Fofanov, Yinglei Miao, Zhanju Liu, Daiwen Chen, Yingzi Cong

Aims

Regenerating islet-derived protein (REG3γ), an antimicrobial peptide, typically expressed by intestinal epithelial cells (IEC), plays crucial roles in intestinal homeostasis and controlling gut microbiota. However, the mechanisms that regulate IEC expression of REG3γ are still largely unclear. In this study, we investigated whether and how interleukin (IL) 33, an alarmin produced by IEC in response to injury, regulates REG3γ expression in IEC, thus contributing to intestinal homeostasis.

Background & aims

Regenerating islet-derived protein (REG3γ), an antimicrobial peptide, typically expressed by intestinal epithelial cells (IEC), plays crucial roles in intestinal homeostasis and controlling gut microbiota. However, the mechanisms that regulate IEC expression of REG3γ are still largely unclear. In this study, we investigated whether and how interleukin (IL) 33, an alarmin produced by IEC in response to injury, regulates REG3γ expression in IEC, thus contributing to intestinal homeostasis.

Conclusions

Our study demonstrated that IL33, which is produced by IEC in response to injury and inflammatory stimulation, in turn promotes IEC expression of REG3γ, and controls the gut microbiota of the host.

Methods

IEC were isolated from wild-type and IL33-/- mice to determine expression of REG3γ and other antimicrobial peptides by quantitative real-time polymerase chain reaction and Western blot. IEC cell lines were used for mechanistic studies. 16S rRNA pyrosequencing analysis was used for measuring gut microbiota. Citrobacter rodentium was used for enteric infections.

Results

The expression of REG3γ, but not β-defensins, in IECs of IL33-/- mice was significantly lower than wild-type mice. IL33 treatment induced IEC expression of REG3γ in both mice and human cell lines. Mechanistically, IL33 activated STAT3, mTOR, and ERK1/2 in IEC. Inhibition of these pathways abrogated IL33-induction of REG3γ. IL33-/- mice demonstrated higher bacteria loads and altered microbiota composition. IL33 did not directly inhibit bacterial growth, but promoted wild-type, not REG3γKO, IECs to kill bacteria in vitro. Consistently, C rodentium infection induced IEC IL33 expression, and IL33-/- mice demonstrated an impaired bacterial clearance with C rodentium infection. Conclusions: Our study demonstrated that IL33, which is produced by IEC in response to injury and inflammatory stimulation, in turn promotes IEC expression of REG3γ, and controls the gut microbiota of the host.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。