Molecular and Functional Analysis of Choline Transporters and Antitumor Effects of Choline Transporter-Like Protein 1 Inhibitors in Human Pancreatic Cancer Cells

胆碱转运蛋白的分子和功能分析及胆碱转运蛋白样蛋白 1 抑制剂在人胰腺癌细胞中的抗肿瘤作用

阅读:6
作者:Kaho Hirai, Saiichiro Watanabe, Nozomi Nishijima, Kaoru Shibata, Akane Hase, Tsuyoshi Yamanaka, Masato Inazu

Abstract

Choline, an organic cation, is one of the biofactors that play an important role in the structure and the function of biological membranes, and it is essential for the synthesis of phospholipids. Choline positron emission tomography-computed tomography (PET/CT) provides useful information for the imaging diagnosis of cancers, and increased choline accumulation has been identified in a variety of tumors. However, the molecular mechanisms of choline uptake and choline transporters in pancreatic cancer have not been elucidated. Here, we examined molecular and functional analyses of choline transporters in human pancreatic-cancer cell line MIA PaCa-2 and the elucidation of the action mechanism behind the antitumor effect of novel choline-transporter-like protein 1 (CTL1) inhibitors, Amb4269951 and its derivative Amb4269675. CTL1 and CTL2 mRNAs were highly expressed in MIA PaCa-2 cells, and CTL1 and CTL2 proteins were localized in the plasma membrane and the intracellular compartments, respectively. Choline uptake was characterized by Na+-independence, a single-uptake mechanism, and inhibition by choline-uptake inhibitor HC-3, similar to the function of CTL1. These results suggest that the uptake of extracellular choline in MIA PaCa-2 cells is mediated by CTL1. Choline deficiency and HC-3 treatment inhibited cell viability and increased caspase 3/7 activity, suggesting that the inhibition of CTL1 function, which is responsible for choline transport, leads to apoptosis-induced cell death. Both Amb4269951 and Amb4269675 inhibited choline uptake and cell viability and increased caspase-3/7 activity. Ceramide, which is increased by inhibiting choline uptake, also inhibited cell survival and increased caspase-3/7 activity. Lastly, both Amb4269951 and Amb4269675 significantly inhibited tumor growth in a mouse-xenograft model without any adverse effects such as weight loss. CTL1 is a target molecule for the treatment of pancreatic cancer, and its inhibitors Amb4269951 and Amb4269675 are novel lead compounds.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。