Engineered biomimetic nanoreactor for synergistic photodynamic-chemotherapy against hypoxic tumor

工程仿生纳米反应器用于协同光动力化学治疗缺氧肿瘤

阅读:7
作者:Haoyu Guo, Lutong Wang, Wei Wu, Mingke Guo, Lingkai Yang, Zhenhao Zhang, Li Cao, Feifei Pu, Xin Huang, Zengwu Shao

Abstract

Photodynamic therapy (PDT) can produce a large amount of reactive oxygen species (ROS) in the radiation field to kill tumor cells. However, the sustainable anti-tumor efficacy of PDT is limited due to the hypoxic microenvironment of tumor. In this study, classic PDT agent indocyanine green (ICG) and hypoxia-activated chemotherapeutic drug tirapazamine (TPZ) were loaded on mesoporous polydopamine (PDA) to construct PDA@ICG-TPZ nanoparticles (PIT). Then, PIT was camouflaged with cyclic arginine-glycine-aspartate (cRGD) modified tumor cell membranes to obtain the engineered membrane-coated nanoreactor (cRGD-mPIT). The nanoreactor cRGD-mPIT could achieve the dual-targeting ability via tumor cell membrane mediated homologous targeting and cRGD mediated active targeting. With the enhanced tumor-targeting and penetrating delivery system, PIT could efficiently accumulate in hypoxic tumor cells and the loaded drugs were quickly released in response to near-infrared (NIR) laser. The nanoreactor might produce cytotoxic ROS under NIR and further enhance hypoxia within tumor to activate TPZ, which efficiently inhibited hypoxic tumor by synergistic photodynamic-chemotherapy. Mechanically, hypoxia-inhibitory factor-1α (HIF-1α) was down-regulated by the synergistic therapy. Accordingly, the cRGD-mPIT nanoreactor with sustainable and cascade anti-tumor effects and satisfied biosafety might be a promising strategy in hypoxic tumor therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。