Integrated stem cell signature and cytomolecular risk determination in pediatric acute myeloid leukemia

儿童急性髓系白血病的综合干细胞特征和细胞分子风险测定

阅读:10
作者:Benjamin J Huang, Jenny L Smith, Jason E Farrar, Yi-Cheng Wang, Masayuki Umeda, Rhonda E Ries, Amanda R Leonti, Erin Crowgey, Scott N Furlan, Katherine Tarlock, Marcos Armendariz, Yanling Liu, Timothy I Shaw, Lisa Wei, Robert B Gerbing, Todd M Cooper, Alan S Gamis, Richard Aplenc, E Anders Kolb, Jef

Abstract

Relapsed or refractory pediatric acute myeloid leukemia (AML) is associated with poor outcomes and relapse risk prediction approaches have not changed significantly in decades. To build a robust transcriptional risk prediction model for pediatric AML, we perform RNA-sequencing on 1503 primary diagnostic samples. While a 17 gene leukemia stem cell signature (LSC17) is predictive in our aggregated pediatric study population, LSC17 is no longer predictive within established cytogenetic and molecular (cytomolecular) risk groups. Therefore, we identify distinct LSC signatures on the basis of AML cytomolecular subtypes (LSC47) that were more predictive than LSC17. Based on these findings, we build a robust relapse prediction model within a training cohort and then validate it within independent cohorts. Here, we show that LSC47 increases the predictive power of conventional risk stratification and that applying biomarkers in a manner that is informed by cytomolecular profiling outperforms a uniform biomarker approach.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。