Conclusions
A distinct subset of the ovarian surface kinome is altered in the transition from high risk to invasive cancer and genetic mutation is not a dominant mechanism for these modifications. These results have significant implications for early detection and targeted therapeutic approaches for women at high risk of developing ovarian cancer.
Results
Seven surface kinases, ALK, EPHA5, EPHB1, ERBB4, INSRR, PTK, and TGFbetaR1 displayed a distinctive linear trend in expression from normal, highrisk, and malignant epithelium. We confirmed these results using semiquantitative reverse transcription-polymerase chain reaction and tissue array of 202 ovarian cancer samples. A strong correlate was shown between disease-free survival and the expression of ERBB4. DNA sequencing revealed two novel mutations in ERBB4 in two cancer samples. Conclusions: A distinct subset of the ovarian surface kinome is altered in the transition from high risk to invasive cancer and genetic mutation is not a dominant mechanism for these modifications. These results have significant implications for early detection and targeted therapeutic approaches for women at high risk of developing ovarian cancer.
