Understanding and Controlling Reactivity Patterns of Pd1@C3N4-Catalyzed Suzuki-Miyaura Couplings

理解和控制Pd1@C3N4催化的Suzuki-Miyaura偶联反应的反应模式

阅读:2
作者:Marc Eduard Usteri ,Georgios Giannakakis ,Aram Bugaev ,Javier Pérez-Ramírez ,Sharon Mitchell

Abstract

Using heterogeneous single-atom catalysts (SACs) in the Suzuki-Miyaura coupling (SMC) has promising economic and environmental benefits over traditionally applied palladium complexes. However, limited mechanistic understanding hinders progress in their design and implementation. Our study provides critical insights into the working principles of Pd1@C3N4, a promising SAC for the SMC. We demonstrate that the base, ligand, and solvent play pivotal roles in facilitating interface formation with reaction media, activating Pd centers, and modulating competing reaction pathways. Controlling the previously overlooked interplay between base strength, reagent solubility, and surface wetting is essential for mitigating mass transfer limitations in the triphasic reaction system and promoting catalyst reusability. Optimum conditions for Pd1@C3N4 require polar solvents, intermediate base strength, and increased water content. Our investigations reveal that high selectivity requires minimizing competitive coordination of bases and phosphine ligands to the Pd centers, to avoid homocoupling and alternative reductive elimination mechanisms giving rise to phosphonium side-products. Furthermore, in situ XAS investigations probing electronic structures and coordination environments of Pd sites further rationalize the base and ligand coordination, confirming and expanding upon previous computational hypotheses for Pd1@C3N4. This understanding allows for designing a more selective ligand-free reaction pathway using the solvent and base to modulate the chemical environment of the active sites. We highlight the importance of environment-compatible surface tension, the creation of coordinatively available active sites, and the stabilization of partially reduced Pd centers, emphasizing the importance of mechanistic studies to advance the design of SACs in organic liquid phase reactions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。