Proteomic profiling of the hypothalamus in two mouse models of narcolepsy

两种小鼠嗜睡症模型下丘脑的蛋白质组学分析

阅读:4
作者:Sausan Azzam, Daniela Schlatzer, David Nethery, Dania Saleh, Xiaolin Li, Afaf Akladious, Mark R Chance, Kingman P Strohl

Abstract

Narcolepsy is a disabling neurological disorder of sleepiness linked to the loss of neurons producing orexin neuropeptides in the hypothalamus. Two well-characterized phenotypic mouse models of narcolepsy, loss-of-function (orexin-knockout), and progressive loss of orexin (orexin/ataxin-3) exist. The open question is whether the proteomics signatures of the hypothalamus would be different between the two models. To address this gap, we utilized a label-free proteomics approach and conducted a hypothalamic proteome analysis by comparing each disease model to that of wild type. Following data processing and statistical analysis, 14 484 peptides mapping to 2282 nonredundant proteins were identified, of which 39 proteins showed significant differences in protein expression across groups. Altered proteins in both models showed commonalties in pathways for mitochondrial dysfunction and neuronal degeneration, as well as altered proteins related to inflammatory demyelination, insulin resistance, metabolic responses, and the dopaminergic and monoaminergic systems. Model-specific alterations in insulin degraded enzyme (IDE) and synaptosomal-associated protein-25 were unique to orexin-KO and orexin/ataxin-3, respectively. For both models, proteomics not only identified clinically suspected consequences of orexin loss on energy homeostasis and neurotransmitter systems, but also identified commonalities in inflammation and degeneration despite the entirely different genetic basis of the two mouse models.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。