Carbohydrate Syntrophy enhances the establishment of Bifidobacterium breve UCC2003 in the neonatal gut

碳水化合物互养促进短双歧杆菌UCC2003在新生儿肠道中的定植

阅读:2
作者:Mary O'Connell Motherway ,Frances O'Brien ,Tara O'Driscoll ,Patrick G Casey ,Fergus Shanahan ,Douwe van Sinderen

Abstract

The non-digestible oligosaccharide fraction of maternal milk represents an important of carbohydrate and energy source for saccharolytic bifidobacteria in the gastrointestinal tract during early life. However, not all neonatal bifidobacteria isolates can directly metabolise the complex sialylated, fucosylated, sulphated and/or N-acetylglucosamine-containing oligosaccharide structures present in mothers milk. For some bifidobacterial strains, efficient carbohydrate syntrophy or crossfeeding is key to their establishment in the gut. In this study, we have adopted advanced functional genomic approaches to create single and double in-frame deletions of the N-acetyl glucosamine 6-phosphate deacetylase encoding genes, nagA1 and nagA2, of B. breve UCC2003. In vitro phenotypic analysis followed by in vivo studies on co-colonisation, mother to infant transmission, and evaluation of the relative co-establishment of B. bifidum and B. breve UCC2003 or UCC2003ΔnagA1ΔnagA2 in dam-reared neonatal mice demonstrates the importance of crossfeeding on sialic acid, fucose and N-acetylglucosamine-containing oligosaccharides for the establishment of B. breve UCC2003 in the neonatal gut. Furthermore, transcriptomic analysis of in vivo gene expression shows upregulation of genes associated with the utilisation of lactose, sialic acid, GlcNAc-6-S and fucose in B. breve UCC2003, while for UCC2003ΔnagA1ΔnagA2 only genes for lactose metabolism were upregulated.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。