ZEB1 regulates bone metabolism in osteoporotic rats through inducing POLDIP2 transcription

ZEB1通过诱导POLDIP2转录调控骨质疏松大鼠的骨代谢

阅读:6
作者:Xianwei Zhu, Fei Yan, Lipeng Liu, Qun Huang

Background

Osteoporosis (OP) is a common metabolic bone disease mainly involving bone remodeling and blood vessels. The current study aimed to explore the role of zinc finger E-box binding homeobox 1 (ZEB1) in OP.

Conclusions

ZEB1 promotes osteoblastogenesis and represses osteoclast differentiation, ultimately reducing the occurrence of postmenopausal OP by elevating the expression of POLDIP2.

Methods

First, gene expression microarrays for OP were downloaded from the Gene Expression Omnibus database and analyzed to screen for potential targets. Subsequently, a rat OP model was constructed using ovariectomy (OVX), and osteoblastic and osteoclastic differentiation and alterations in osteoporotic symptoms were observed upon intraperitoneal injection of oe-ZEB1 lentiviral vectors. DNA polymerase delta interacting protein 2 (POLDIP2) was predicted to be a downstream target of ZEB1, which was validated by ChIP-qPCR and dual-luciferase experiments. RAW264.7 cells were subjected to lentiviral vector infection of oe-ZEB1 and/or sh-POLDIP2, followed by RANKL treatment to induce osteoclast differentiation.

Results

ZEB1 was poorly expressed in blood samples of postmenopausal patients with OP and in bone tissues of OVX-treated rats. Overexpression of ZEB1 or POLDIP2 in OVX rats promoted osteoblastogenesis and inhibited osteoclast differentiation. In RANKL-treated RAW264.7 cells, the transcription factor ZEB1 enhanced the expression of POLDIP2, and silencing of POLDIP2 attenuated the inhibitory effect of oe-ZEB1 on the differentiation of macrophages RAW264.7 to osteoclasts. Conclusions: ZEB1 promotes osteoblastogenesis and represses osteoclast differentiation, ultimately reducing the occurrence of postmenopausal OP by elevating the expression of POLDIP2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。