AtKC1 and CIPK23 Synergistically Modulate AKT1-Mediated Low-Potassium Stress Responses in Arabidopsis

AtKC1和CIPK23协同调节拟南芥中AKT1介导的低钾胁迫反应

阅读:2
作者:Xue-Ping Wang ,Li-Mei Chen ,Wen-Xin Liu ,Li-Ke Shen ,Feng-Liu Wang ,Yuan Zhou ,Ziding Zhang ,Wei-Hua Wu ,Yi Wang

Abstract

In Arabidopsis (Arabidopsis thaliana), the Shaker K(+) channel AKT1 conducts K(+) uptake in root cells, and its activity is regulated by CBL1/9-CIPK23 complexes as well as by the AtKC1 channel subunit. CIPK23 and AtKC1 are both involved in the AKT1-mediated low-K(+) (LK) response; however, the relationship between them remains unclear. In this study, we screened suppressors of low-K(+) sensitive [lks1 (cipk23)] and isolated the suppressor of lks1 (sls1) mutant, which suppressed the leaf chlorosis phenotype of lks1 under LK conditions. Map-based cloning revealed a point mutation in AtKC1 of sls1 that led to an amino acid substitution (G322D) in the S6 region of AtKC1. The G322D substitution generated a gain-of-function mutation, AtKC1(D), that enhanced K(+) uptake capacity and LK tolerance in Arabidopsis. Structural prediction suggested that glycine-322 is highly conserved in K(+) channels and may function as the gating hinge of plant Shaker K(+) channels. Electrophysiological analyses revealed that, compared with wild-type AtKC1, AtKC1(D) showed enhanced inhibition of AKT1 activity and strongly reduced K(+) leakage through AKT1 under LK conditions. In addition, phenotype analysis revealed distinct phenotypes of lks1 and atkc1 mutants in different LK assays, but the lks1 atkc1 double mutant always showed a LK-sensitive phenotype similar to that of akt1 This study revealed a link between CIPK-mediated activation and AtKC1-mediated modification in AKT1 regulation. CIPK23 and AtKC1 exhibit distinct effects; however, they act synergistically and balance K(+) uptake/leakage to modulate AKT1-mediated LK responses in Arabidopsis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。