Dual mechanism of daunorubicin-induced cell death in both sensitive and MDR-resistant HL-60 cells

柔红霉素诱导敏感和耐多药HL-60细胞死亡的双重机制

阅读:3
作者:M G Côme ,A Skladanowski, A K Larsen, G Laurent

Abstract

Exposure of some acute myeloid leukaemia (AML) cells to daunorubicin leads to rapid cell death, whereas other AML cells show natural drug resistance. This has been attributed to expression of functional P-glycoprotein resulting in reduced drug accumulation. However, it has also been proposed that P-glycoprotein-expressing multidrug-resistant (MDR) cells are inherently defective for apoptosis. To distinguish between these different possibilities, we have compared the cell death process in a human AML cell line (HL-60) with a MDR subline (HL-60/Vinc) at doses that yield either similar intracellular daunorubicin concentrations or comparable cytotoxicity. Adjustment of the dose to obtain the same intracellular drug accumulation in the two cell lines did not result in equal cytotoxicity, suggesting the presence of additional resistance mechanisms in the P-glycoprotein-expressing HL-60/Vinc cells. However, at equitoxic doses, similar cell death pathways were observed. In HL-60 cells, daunorubicin induced rapid apoptosis at 0.5-1 microM and delayed mitotic cell death at 0.1 microM. These concentrations are within the clinical dose range. Similarly, HL-60/Vinc cells underwent apoptosis at 50-100 microM daunorubicin and mitotic cell death at 10 microM. These results show, for the first time, that anthracyclines can induce cell death by a dual mechanism in both sensitive and MDR cells. Our results also show that not only the cytotoxicity, but also the kinetics and mechanism of cell death, are dose dependent. Interestingly, regrowth was observed only in association with delayed cell death and the formation of enlarged, often polyploid, cells with micronucleation, suggesting that morphological criteria may be useful to evaluate treatment efficacy in patients with myeloid leukaemias.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。