Effects of Anaplasma phagocytophilum on host cell ferritin mRNA and protein levels

嗜吞噬细胞无形体对宿主细胞铁蛋白mRNA和蛋白水平的影响

阅读:2
作者:Jason A Carlyon ,Dara Ryan, Kristina Archer, Erol Fikrig

Abstract

Ferritin is a major intracellular iron storage protein and also functions as a cytoprotectant by sequestering iron to minimize the formation of reactive oxygen species. Anaplasma phagocytophilum, the causative agent of human granulocytic anaplasmosis, is an obligate intracellular bacterium that colonizes neutrophils. We have previously reported that human promyelocytic HL-60 cells infected with A. phagocytophilum demonstrate increased transcription of ferritin heavy chain and also that the bacterium stimulates neutrophil NADPH oxidase assembly and degranulation during the initial hours of infection (J. A. Carlyon, W. T. Chan, J. Galan, D. Roos, and E. Fikrig, J. Immunol. 169:7009-7018, 2002, and J. A. Carlyon, D. Abdel-Latif, M. Pypaert, P. Lacy, and E. Fikrig, Infect. Immun. 72:4772-4783, 2004). In this study, we assessed ferritin mRNA and protein levels during A. phagocytophilum infection in vitro using HL-60 cells and neutrophils and in vivo using neutrophils from infected mice. The addition of A. phagocytophilum, as well as Escherichia coli and serum-opsonized zymosan, to neutrophils results in a pronounced increase in ferritin light-chain transcription and a concomitant rise in ferritin protein levels. Neutrophils from A. phagocytophilum-infected mice demonstrate elevated ferritin heavy-chain mRNA expression, a phenomenon consistent with infections by intracellular pathogens. Notably, ferritin protein levels of infected HL-60 cells were markedly diminished in a dose- and time-dependent manner. These studies provide insight into the effects A. phagocytophilum has on the ferritin levels of its host cell.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。