Class prediction models of thrombocytosis using genetic biomarkers

利用遗传生物标志物对血小板增多症进行分类预测模型

阅读:2
作者:Dmitri V Gnatenko ,Wei Zhu, Xiao Xu, Edward T Samuel, Melissa Monaghan, Mohammad H Zarrabi, Christi Kim, Anil Dhundale, Wadie F Bahou

Abstract

Criteria for distinguishing among etiologies of thrombocytosis are limited in their capacity to delineate clonal (essential thrombocythemia [ET]) from nonclonal (reactive thrombocytosis [RT]) etiologies. We studied platelet transcript profiles of 126 subjects (48 controls, 38 RT, 40 ET [24 contained the JAK2V(617)F mutation]) to identify transcript subsets that segregated phenotypes. Cross-platform consistency was validated using quantitative real-time polymerase chain reaction (RT-PCR). Class prediction algorithms were developed to assign phenotypic class between the thrombocytosis cohorts, and by JAK2 genotype. Sex differences were rare in normal and ET cohorts (< 1% of genes) but were male-skewed for approximately 3% of RT genes. An 11-biomarker gene subset using the microarray data discriminated among the 3 cohorts with 86.3% accuracy, with 93.6% accuracy in 2-way class prediction (ET vs RT). Subsequent quantitative RT-PCR analysis established that these biomarkers were 87.1% accurate in prospective classification of a new cohort. A 4-biomarker gene subset predicted JAK2 wild-type ET in more than 85% patient samples using either microarray or RT-PCR profiling, with lower predictive capacity in JAK2V(617)F mutant ET patients. These results establish that distinct genetic biomarker subsets can predict thrombocytosis class using routine phlebotomy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。