Optimizing copy number variation analysis using genome-wide short sequence oligonucleotide arrays

利用全基因组短序列寡核苷酸芯片优化拷贝数变异分析

阅读:3
作者:Derek A Oldridge ,Samprit Banerjee, Sunita R Setlur, Andrea Sboner, Francesca Demichelis

Abstract

The detection of copy number variants (CNV) by array-based platforms provides valuable insight into understanding human diversity. However, suboptimal study design and data processing negatively affect CNV assessment. We quantitatively evaluate their impact when short-sequence oligonucleotide arrays are applied (Affymetrix Genome-Wide Human SNP Array 6.0) by evaluating 42 HapMap samples for CNV detection. Several processing and segmentation strategies are implemented, and results are compared to CNV assessment obtained using an oligonucleotide array CGH platform designed to query CNVs at high resolution (Agilent). We quantitatively demonstrate that different reference models (e.g. single versus pooled sample reference) used to detect CNVs are a major source of inter-platform discrepancy (up to 30%) and that CNVs residing within segmental duplication regions (higher reference copy number) are significantly harder to detect (P < 0.0001). After adjusting Affymetrix data to mimic the Agilent experimental design (reference sample effect), we applied several common segmentation approaches and evaluated differential sensitivity and specificity for CNV detection, ranging 39-77% and 86-100% for non-segmental duplication regions, respectively, and 18-55% and 39-77% for segmental duplications. Our results are relevant to any array-based CNV study and provide guidelines to optimize performance based on study-specific objectives.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。