Dendritic cell-mediated activation-induced cytidine deaminase (AID)-dependent induction of genomic instability in human myeloma

树突状细胞介导的活化诱导胞苷脱氨酶 (AID) 依赖性诱导人类骨髓瘤基因组不稳定性

阅读:2
作者:Srinivas Koduru ,Ellice Wong, Till Strowig, Ranjini Sundaram, Lin Zhang, Matthew P Strout, Richard A Flavell, David G Schatz, Kavita M Dhodapkar, Madhav V Dhodapkar

Abstract

Tumor microenvironment (TME) is commonly implicated in regulating the growth of tumors, but whether it can directly alter the genetics of tumors is not known. Genomic instability and dendritic cell (DC) infiltration are common features of several cancers, including multiple myeloma (MM). Mechanisms underlying genomic instability in MM are largely unknown. Here, we show that interaction between myeloma and DCs, but not monocytes, leads to rapid induction of the genomic mutator activation-induced cytidine deaminase (AID) and AID-dependent DNA double-strand breaks (DSBs) in myeloma cell lines as well as primary MM cells. Both myeloid as well as plasmacytoid DCs have the capacity to induce AID in tumor cells. The induction of AID and DSBs in tumor cells by DCs requires DC-tumor contact and is inhibited by blockade of receptor activator of NF-κB/receptor activator of NF-κB ligand (RANKL) interactions. AID-mediated genomic damage led to altered tumorigenicity and indolent behavior of tumor cells in vivo. These data show a novel pathway for the capacity of DCs in the TME to regulate genomic integrity. DC-mediated induction of AID and resultant genomic damage may therefore serve as a double-edged sword and be targeted by approaches such as RANKL inhibition already in the clinic.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。