The use of multidimensional data to identify the molecular biomarker for pancreatic ductal adenocarcinoma

利用多维数据识别胰腺导管腺癌的分子生物标志物

阅读:2
作者:Liwei Zhuang ,Yue Qi, Yun Wu, Nannan Liu, Yili Fu

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease, and the patient has an extremely poor overall survival with a less than 5% 5-year survival rate. Development of potential biomarkers provides a critical foundation for the diagnosis of PDAC. In this project, we have adopted an integrative approach to simultaneously identify biomarker and generate testable hypothesis from multidimensional omics data. We first examine genes for which expression levels are correlated with survival data. The gene list was screened with TF regulation, predicted miRNA targets information, and KEGG pathways. We identified that 273 candidate genes are correlated with patient survival data. 12 TF regulation gene sets, 11 miRNAs targets gene sets, and 15 KEGG pathways are enriched with these survival genes. Notably, CEBPA/miRNA32/PER2 signaling to the clock rhythm qualifies this pathway as a suitable target for therapeutic intervention in PDAC. PER2 expression was highly associated with survival data, thus representing a novel biomarker for earlier detection of PDAC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。