Assessing the clinical utility of cancer genomic and proteomic data across tumor types

评估癌症基因组学和蛋白质组学数据在不同肿瘤类型中的临床应用价值

阅读:3
作者:Yuan Yuan ,Eliezer M Van Allen ,Larsson Omberg ,Nikhil Wagle ,Ali Amin-Mansour ,Artem Sokolov ,Lauren A Byers ,Yanxun Xu ,Kenneth R Hess ,Lixia Diao ,Leng Han ,Xuelin Huang ,Michael S Lawrence ,John N Weinstein ,Josh M Stuart ,Gordon B Mills ,Levi A Garraway ,Adam A Margolin ,Gad Getz ,Han Liang

Abstract

Molecular profiling of tumors promises to advance the clinical management of cancer, but the benefits of integrating molecular data with traditional clinical variables have not been systematically studied. Here we retrospectively predict patient survival using diverse molecular data (somatic copy-number alteration, DNA methylation and mRNA, microRNA and protein expression) from 953 samples of four cancer types from The Cancer Genome Atlas project. We find that incorporating molecular data with clinical variables yields statistically significantly improved predictions (FDR < 0.05) for three cancers but those quantitative gains were limited (2.2-23.9%). Additional analyses revealed little predictive power across tumor types except for one case. In clinically relevant genes, we identified 10,281 somatic alterations across 12 cancer types in 2,928 of 3,277 patients (89.4%), many of which would not be revealed in single-tumor analyses. Our study provides a starting point and resources, including an open-access model evaluation platform, for building reliable prognostic and therapeutic strategies that incorporate molecular data.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。