Microfluidic devices integrating microcavity surface-plasmon-resonance sensors: glucose oxidase binding-activity detection

集成微腔表面等离子体共振传感器的微流体装置:葡萄糖氧化酶结合活性检测

阅读:6
作者:Dragos Amarie, Abdelkrim Alileche, Bogdan Dragnea, James A Glazier

Abstract

We have developed miniature (approximately 1 microm diameter) microcavity surface-plasmon-resonance sensors (MSPRS), integrated them with microfluidics, and tested their sensitivity to refractive-index changes. We tested their biosensing capability by distinguishing the interaction of glucose oxidase (M(r) 160 kDa) with its natural substrate (beta-D-glucose, M(r) 180 Da) from its interactions with nonspecific substrates (L-glucose, D-mannose, and 2-deoxy-D-glucose). We ran the identical protocol we had used with the MSPRS on a Biacore 3000 instrument using their bare gold chip. Only the MSPRS was able to detect beta-D-glucose binding to glucose oxidase. Each MSPRS can detect the binding to its surface of fewer than 35,000 glucose oxidase molecules (representing 9.6 fg or 60 zmol of protein), about 10(6) times fewer than classical surface-plasmon-resonance biosensors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。