Role of extracellular vesicles in release of protein adducts after acetaminophen-induced liver injury in mice and humans

小鼠和人类乙酰氨基酚诱发肝损伤后细胞外囊泡在蛋白质加合物释放中的作用

阅读:5
作者:Luqi Duan, Anup Ramachandran, Jephte Y Akakpo, James L Weemhoff, Steven C Curry, Hartmut Jaeschke

Abstract

Formation of acetaminophen (APAP) protein adducts are a critical feature of APAP hepatotoxicity, and circulating protein adducts have recently been utilized in bioassays for identification of APAP overdose in humans. Despite their clinical significance, mechanisms of adduct release into the circulation are not well understood. Extracellular vesicles (EVs) are discrete membrane bound vesicles, which package cellular cargo and function in extracellular transport. Clarification of their role in transport of APAP adducts is relevant since adduct packaging within these vesicles could shield them from detection by antibody based methods, resulting in under-estimating adduct levels. Hence, this study evaluated EV release after APAP overdose in primary mouse hepatocytes and human HepaRG cells in vitro, in mice and APAP overdose patients in vivo and examined their role in transport of APAP-protein adducts. EVs were characterized by size and protein composition and the levels of APAP-protein adducts were measured. Significant elevations in circulating EV numbers were observed 6 h after APAP overdose in vivo and by 4 h in primary mouse hepatocytes in culture. EVs were also elevated in media from HepaRG cells by 24 h after APAP exposure, an effect recapitulated in APAP overdose patients, where EV numbers were elevated compared to healthy controls. Although APAP-protein adducts were elevated in circulation and media parallel to the increased exosome release, no detectable adducts were observed within EVs. This suggests that although APAP overdose enhances EV release from hepatocytes in mice and humans, it is not a significant mechanism of release of APAP protein adducts into circulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。