Effect of Water and Carbon Dioxide on the Performance of Basolite Metal-Organic Frameworks for Methane Adsorption

水和二氧化碳对 Basolite 金属有机骨架吸附甲烷性能的影响

阅读:8
作者:David Ursueguía, Eva Díaz, Salvador Ordóñez

Abstract

MOFs are potential adsorbents for methane separation from nitrogen, including recovery in diluted streams. However, water and carbon dioxide can seriously affect the adsorption performance. Three commercial MOFs, basolite C300, F300, and A100, were studied under similar conditions to fugitive methane streams, such as water (75 and 100% relative humidity) and carbon dioxide (0.33%) presence in a fixed bed. The presence of available open metal sites of copper (Cu2+) and aluminum (Al3+) in the case of basolite C300 and A100, respectively, constitutes a clear drawback under humid conditions, since water adsorbs on them, leading to significant methane capacity losses. Surprisingly, basolite F300 is the most resistant material due to its amorphous structure, which hinders water access. The combination of carbon dioxide and water creates a synergy that seriously affects basolite A100, closely related to its breathing effect, but does not constitute an important issue for basolite C300 and F300.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。