Loss of Rsph9 causes neonatal hydrocephalus with abnormal development of motile cilia in mice

Rsph9 缺失导致小鼠新生儿脑积水,并伴有运动纤毛发育异常

阅读:8
作者:Wenzheng Zou, Yuqing Lv, Zux Iang Liu, Pengyan Xia, Hong Li, Jianwei Jiao

Abstract

Hydrocephalus is a brain disorder triggered by cerebrospinal fluid accumulation in brain cavities. Even though cerebrospinal fluid flow is known to be driven by the orchestrated beating of the bundled motile cilia of ependymal cells, little is known about the mechanism of ciliary motility. RSPH9 is increasingly becoming recognized as a vital component of radial spokes in ciliary "9 + 2" ultrastructure organization. Here, we show that deletion of the Rsph9 gene leads to the development of hydrocephalus in the early postnatal period. However, the neurodevelopment and astrocyte development are normal in embryonic Rsph9-/- mice. The tubular structure of the central aqueduct was comparable in Rsph9-/- mice. Using high-speed video microscopy, we visualized lower beating amplitude and irregular rotation beating pattern of cilia bundles in Rsph9-/- mice compared with that of wild-type mice. And the centriolar patch size was significantly increased in Rsph9-/- cells. TEM results showed that deletion of Rsph9 causes little impact in ciliary axonemal organization but the Rsph9-/- cilia frequently had abnormal ectopic ciliary membrane inclusions. In addition, hydrocephalus in Rsph9-/- mice results in the development of astrogliosis, microgliosis and cerebrovascular abnormalities. Eventually, the ependymal cells sloughed off of the lateral wall. Our results collectively suggested that RSPH9 is essential for ciliary structure and motility of mouse ependymal cilia, and its deletion causes the pathogenesis of hydrocephalus.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。