An anti-inflammatory activation sequence governs macrophage transcriptional dynamics during tissue injury in zebrafish

抗炎激活序列控制斑马鱼组织损伤期间巨噬细胞的转录动力学

阅读:9
作者:Nicolas Denans, Nhung T T Tran, Madeleine E Swall, Daniel C Diaz, Jillian Blanck, Tatjana Piotrowski

Abstract

Macrophages are essential for tissue repair and regeneration. Yet, the molecular programs, as well as the timing of their activation during and after tissue injury are poorly defined. Using a high spatio-temporal resolution single cell analysis of macrophages coupled with live imaging after sensory hair cell death in zebrafish, we find that the same population of macrophages transitions through a sequence of three major anti-inflammatory activation states. Macrophages first show a signature of glucocorticoid activation, then IL-10 signaling and finally the induction of oxidative phosphorylation by IL-4/Polyamine signaling. Importantly, loss-of-function of glucocorticoid and IL-10 signaling shows that each step of the sequence is independently activated. Lastly, we show that IL-10 and IL-4 signaling act synergistically to promote synaptogenesis between hair cells and efferent neurons during regeneration. Our results show that macrophages, in addition to a switch from M1 to M2, sequentially and independently transition though three anti-inflammatory pathways in vivo during tissue injury in a regenerating organ.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。