Reciprocal interactions regulate targeting of calcium channel beta subunits and membrane expression of alpha1 subunits in cultured hippocampal neurons

相互作用调节培养海马神经元中钙通道β亚基的靶向性和α1亚基的膜表达

阅读:5
作者:Gerald J Obermair, Bettina Schlick, Valentina Di Biase, Prakash Subramanyam, Mathias Gebhart, Sabine Baumgartner, Bernhard E Flucher

Abstract

Auxiliary beta subunits modulate current properties and mediate the functional membrane expression of voltage-gated Ca(2+) channels in heterologous cells. In brain, all four beta isoforms are widely expressed, yet little is known about their specific roles in neuronal functions. Here, we investigated the expression and targeting properties of beta subunits and their role in membrane expression of Ca(V)1.2 alpha(1) subunits in cultured hippocampal neurons. Quantitative reverse transcription-PCR showed equal expression, and immunofluorescence showed a similar distribution of all endogenous beta subunits throughout dendrites and axons. High resolution microscopy of hippocampal neurons transfected with six different V5 epitope-tagged beta subunits demonstrated that all beta subunits were able to accumulate in synaptic terminals and to colocalize with postsynaptic Ca(V)1.2, thus indicating a great promiscuity in alpha(1)-beta interactions. In contrast, restricted axonal targeting of beta(1) and weak colocalization of beta(4b) with Ca(V)1.2 indicated isoform-specific differences in local channel complex formation. Membrane expression of external hemagglutinin epitope-tagged Ca(V)1.2 was strongly enhanced by all beta subunits in an isoform-specific manner. Conversely, mutating the alpha-interaction domain of Ca(V)1.2 (W440A) abolished membrane expression and targeting into dendritic spines. This demonstrates that in neurons the interaction of a beta subunit with the alpha-interaction domain is absolutely essential for membrane expression of alpha(1) subunits, as well as for the subcellular localization of beta subunits, which by themselves possess little or no targeting properties.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。